- Referred to as PDEs
- These are differential equations involving partial derivatives
- Examples:
 - Heat equation
 - One dimension: $u_t = \alpha u_{xx}$.
 - u(t,x) represents temperature with respect to time, position
 - α is the rate of diffusion.
 - Generalized: $\frac{\partial u}{\partial t} \alpha \nabla^2 u = 0$
 - Wave equation

- Schrödinger equation
 - Time-dependent: $i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \hat{H} \Psi(\vec{r}, t)$
- o Navier-Stokes equations
- Existence and uniqueness are hard to prove
- **Superposition Principle** (pretty much the same as for ODEs): any linear combination of solutions of a homogeneous linear PDE is also a solution.
- Second order linear partial differential equations:
 - O Take the form $Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu + G = 0$:
 - $\circ \quad \textbf{Elliptic PDE: } B^2 AC < 0$
 - Examples: Laplace equation $\nabla^2 u = 0$, Poisson equation $\nabla^2 u = f(x, y)$
 - $\circ \quad \textbf{Hyperbolic PDE: } B^2 AC > 0$
 - Example: wave equation in one dimension $u_{tt} = c^2 u_{xx}$
 - o **Parabolic PDE**: $B^2 AC = 0$
 - Example: heat equation in one dimension $u_t = \alpha u_{xx}$